Commutative Algebra

Vinayak Joshi
Dept. of Mathematics
S P Pune University
EXTENDED AND CONTRACTED IDEALS IN RINGS OF FRACTIONS

Let \(A \) be a ring, \(S \) a multiplicatively closed subset of \(A \) and \(f: A \to S^{-1}A \) the natural homomorphism, defined by \(f(a) = a/1 \). Let \(C \) be the set of contracted ideals in \(A \), and let \(E \) be the set of extended ideals in \(S^{-1}A \) (cf. (1.17)). If \(a \) is an ideal in \(A \), its extension \(a^e \) in \(S^{-1}A \) is \(S^{-1}a \) (for any \(y \in a^e \) is of the form \(\sum a_i/s_i \), where \(a_i \in a \) and \(s_i \in S \); bring this fraction to a common denominator).

Proposition 3.11. i) Every ideal in \(S^{-1}A \) is an extended ideal.

ii) If \(a \) is an ideal in \(A \), then \(a^{ec} = \bigcup_{s \in S} (a:s) \). Hence \(a^e = (1) \) if and only if \(a \) meets \(S \).

iii) \(a \in C \iff \) no element of \(S \) is a zero-divisor in \(A/a \).

iv) The prime ideals of \(S^{-1}A \) are in one-to-one correspondence \((\wp \leftrightarrow S^{-1}\wp) \) with the prime ideals of \(A \) which don’t meet \(S \).
Proof:

Let \(J \) be an ideal of \(\mathbb{Z}A \).

Let \(I = \{ a \in A \mid \frac{a}{1} \in J \} \). We claim that \(I \) is an ideal of \(A \).

Since \(\frac{0}{1} \in J \), we have \(0 \in I \). Thus \(I \) is nonempty. Let \(a, b \in I \). Then \(a \cdot b \in J \).

Since \(\frac{1}{1} \in J \) is an ideal, we have

\[
\frac{a + b}{1} = \frac{a}{1} + \frac{b}{1} \in J \Rightarrow a + b \in I.
\]

Let \(a \in I \) and \(x \in A \). Then \(\frac{x}{1} \in J \).

Being \(J \) an ideal of \(\mathbb{Z}A \), \(\frac{1}{1} \cdot a = \frac{xa}{1} \in J \).
Hence $ra \in I$. This proves that I is an ideal of A.

Now, we claim that $J = I^e \subseteq I$.

Let $\frac{a}{b} \in J$. Since $\frac{b}{1} \in S^{-1}A$, we have

\[
\frac{b}{1} \cdot \frac{a}{b} = \frac{a}{1} \in J. \text{ This gives } a \in I.
\]

Hence $f(a) = \frac{a}{1} \in f(I)$. Take $\frac{1}{b} \in S^{-1}A$.

\[
\Rightarrow \frac{a}{b} \cdot \frac{1}{b} \in I^e \Rightarrow \frac{a}{b} \in I^e. \text{ This gives } \boxed{J \subseteq I^e}.
\]
Conversely, assume that $a/b \in I^e$. Then

$$\frac{a}{b} = \sum_{\text{finite}} \frac{\xi_i}{d_i} \cdot f(x_i), \quad \xi_i \in S intending b\text{ to } x_i \in I. $$

Since $a_i \in I$, $f(x_i) = x_i \in J$ and J is an ideal of S, A gives $\sum_{\text{finite}} \frac{\xi_i}{d_i} \cdot f(x_i) \in J \Rightarrow \frac{a}{b} \in J$.

This proves that $I^e \subseteq J$. Hence $I^e = J$.
\[2 \text{ Claim: } \quad I^{ec} = \bigcup_{s \in S} (I : s). \]

Let \(x \in I^{ec} = \overline{f}(I^e) \), where \(f : A \to \overline{s} A \)
given by \(f(a) = \frac{a}{y} \).

Hence \(f(x) \in I^{e} = \overline{s}(I) \). This gives \(f(x) = \frac{a}{y} \) for some \(a \in I \) and \(y \in S \).

But \(f(x) = \frac{1}{y} \). Hence \(x = \frac{a}{y} \). This gives \((a \cdot 1 - axy)t = 0 \) for some \(t \in S \).

i.e. \(a + t = ayt \) where \(a \in I \).

\[\Rightarrow \quad ayt \in I. \]

Thus \(x \in I : s' \). Thus \(I^{ec} \subseteq \bigcup_{s \in S} (I : s) \).
Conversely, assume that \(x \in U \cup I : s \).

Hence \(x \in I : t \) for some \(t \in S \). This gives \(x t \in I \). From the first part to show \(x \in I^{ec} \), it is enough to show that
\[
\frac{x}{1} = f(x) = \frac{a}{b}, \text{ where } a \in I \& b \in S.
\]

It is clear that \(\frac{x}{1} = \frac{x t}{t} = \frac{a}{b}, \text{ where } a = x t \text{ if } b = t \in S \). Thus \(x \in I^{ec} \).

Thus \(U \cup I : s \subseteq I^{ec} \).
In particular, \[I^c = (1) = s^+ A \]
\[\iff \quad I^{ec} = \left(s^+ A \right)^c = A = (1) \text{ unity of } A \]
\[\iff \quad UI \cdot s = I^{ec} = (1) \exists 1 \]
\[s \in S \]
\[\iff \quad 1 \in I \cdot s \text{ for some } s \in S. \]
\[\iff \quad s \in I \quad \text{ implies } \]
\[\iff \quad I \cap S \neq \emptyset. \]
2. Let I be a contracted ideal.

Then $I = I^e c (\text{Prop. 1.17})$

$= \bigcup I : S$.

Claim: No element of S is a zero-divisor in A/I.

Suppose on the contrary that for some $x \in S$,

$(x + I)$ is a zero-divisor in A/I.

Hence $\exists y + I \neq I : \ (x + I)(y + I) = I$.

i.e. $xy + I = I$, i.e. $xy \in I$.

i.e. $y \in I : x \in \bigcup I : S = I^e c = I$.

This proves that $\{y \in I\}$, a contradiction. Thus the claim.
Conversely, assume that whenever

\[(x + I)(y + I) = I \text{ for some } x \in S \Rightarrow y \in I.\]

Claim: \[I = I^e c.\]

Clearly, \[I \subseteq I^e c.\]

Let \[x \in I^e c = \bigcup_{I \in S} I^I.\] Then \[x \in I^I t \text{ for some } t \in S.\]

Some \(t \in S, i.e., x \cdot t \in I \text{ for } t \in S.\) i.e. \((x + I)(t + I) = x \cdot t + I = I \text{ } \& \text{ } t \in S\)

By the hypothesis, \(x \in I.\) This proves that \[\sqrt{I^e c} = I.\]
\[f: A \to B, \text{ where } A = \{ p \in \text{spec}(A) \mid p \not\mid s = f \} \]

and \[B = \{ q \in \text{spec}(S^{-1}A) \}. \]

Claim: \(f \) is bijective.

Let \(p \) be a prime ideal of \(A \) s.t. \(p \not\mid s \), i.e. \(p \not\subset A \). We prove that \(S^{-1}p \in B \), i.e. \(S^{-1}(p) \) is a prime ideal in \(S^{-1}A \).

Clearly, \(S^{-1}p \) is a proper ideal of \(S^{-1}A \).

Let \(\frac{a}{s}, \frac{b}{s} \in S^{-1}p. \) Then \(\frac{ab}{ss'} \in S^{-1}p. \)
Hence \(\frac{\text{ab}}{s} = \frac{x}{y} \) for \(x \in P \) \& \(y \in S \).

This gives \((\text{aby} - ss'x)t = 0\) for some \(t \leq S\).

\[
\Rightarrow \quad \text{aby}t = ss'xt \in P \quad (\text{as } x \in P).
\]

Since \(P \) is prime, we have \(\text{ab} \in P \)

as \(y, t \leq S \) and \(S \) is m.c.s \(\Rightarrow \text{yt} \leq S \) \& \(\text{pt} \in S \).

By primeness of \(P \) we have a coprime \(P \).

Hence \(\frac{a}{s} \in \bar{s}'p \) or \(\frac{b}{s} \in \bar{s}'p \).

Thus \(\bar{s}'p \in B \), i.e. \(\bar{s}'p \) is a prime ideal in \(\bar{S} \).
Let J be a prime ideal in $\mathcal{S}A$. Then $J = \mathcal{S}^1(I)$ (as every ideal in $\mathcal{S}A$ is extended).

Where $I = \{ a \in A \mid \frac{a}{1} \in J \}$.

Claim: I is a prime ideal of A with $I \cap S = \emptyset$.

Clearly, I is a proper ideal of A.

To prove I is prime, assume that $ab \in I$. Then $\frac{ab}{1} = \frac{a}{1} \cdot \frac{b}{1} \in \mathcal{S}^1(I) = J$.

Being J prime, $\frac{a}{1} \in \mathcal{S}^1(I)$ or $\frac{b}{1} \in \mathcal{S}^1(I)$.
Hence either \(a \in I \) or \(b \in I \). Thus \(I \) is a prime ideal of \(A \).

If \(I \cap S \neq \emptyset \), then by previous result \(I^e = (1) = \Sigma A \).

\(\therefore J = \Sigma (I) = I^e = (1) \), a contradiction to properness of \(I \) (as \(J \) is prime).

\[\Rightarrow I \cap S = \emptyset \Rightarrow f \text{ is onto.} \]

Claim: \(f \) is 1-1.

Let \(\Sigma^1(P_1) = \Sigma^1(P_2) \) for some \(P_1, P_2 \in \text{Spec}(A) \) \& \(P_1, P_2 \not\approx S = \emptyset = P_2 \cap S \).
\[\Rightarrow f^{-1}(S_{P_1}) = f^{-1}(S_{P_2}) \]
\[\Rightarrow P_{\text{ec}} = P_{\text{ec}} \]
\[\Rightarrow P_1 = P_2 \]

Thus \(f \) is 1-1.

This proves that \(f \) is bijective.
v) The operation S^{-1} commutes with formation of finite sums, products, intersections and radicals.

Proof: \(\dot{\circ} \quad \overline{S}(I+J) = \overline{S}(I) + \overline{S}(J) \)

Let \(x \in \overline{S}(I+J) \). Then

\[
\begin{align*}
 x &= \frac{i+j}{8} \quad \text{for } i \in I, j \in J \quad \forall \quad 8 \in S,
 \\
 &= \frac{i}{8} + \frac{j}{8} \quad \in \overline{S}(I) + \overline{S}(J)
\end{align*}
\]

Conversely, let \(t \in \overline{S}(I) + \overline{S}(J) \).

Then \(t = \frac{x+y}{8} \quad \text{for } x \in I, y \in J \quad \forall \quad 8 \in S. \)
Then \(t = xs' + ys' \) \\
\[\frac{xs'}{ys'} \] (clearly), \\
\(ss' \in S \), \(x \in I \) and \(ys' \in J \). \\
Hence \(t \in \overline{S}(I + J) \).

This proves that \(\overline{S}(I + J) = \overline{S}(I) \cap \overline{S}(J) \). \\

Similarly, \(\overline{S}(I \cap J) = \overline{S}(I) \cup \overline{S}(J) \). \\
\(4 \overline{S}(2 \triangle I) = 2 \overline{S}(4 \triangle I) \). (Exercise).
Let \(\varphi : \mathbb{Z} \to \mathbb{Z} [i] \) be a ring homomorphism. We have already noted that \((5)\) is prime in \(\mathbb{Z}\) whereas \((5)\mathbb{C}^2\) is not prime in \(\mathbb{Z} [i] \).

Consider \(S = \mathbb{Z} \), \(3\), \(3^2\), \(\ldots\). Clearly, \(S \) is mcs. Consider a homomorphism \(f : \mathbb{Z} \to S' \mathbb{Z} \) then

\[
(5) = \varphi^{-1}(5) = \left\{ \frac{5k}{3^j} \mid k \in \mathbb{Z}, \ j \in \mathbb{N}_0 \right\}.
\]

Here \((5)\) is a prime ideal in \(S' \mathbb{Z}\) as \((5) \cap S = \phi\). Thus, we are not able to find a mcs \(S \) s.t. \(\frac{1}{S} \mathbb{Z} = \mathbb{Z} [i] \).
Corollary 3.12. If \mathfrak{N} is the nilradical of A, the nilradical of $S^{-1}A$ is $S^{-1}\mathfrak{N}$. ■

Corollary 3.13. If \mathfrak{p} is a prime ideal of A, the prime ideals of the local ring $A_\mathfrak{p}$ are in one-to-one correspondence with the prime ideals of A contained in \mathfrak{p}.

Proof. Take $S = A - \mathfrak{p}$ in (3.11) (iv). ■

Proof: follows from the fact that

$$S^{-1}(\bigcap P_i) = \bigcap S^{-1}(P_i).$$

Proof: follows from Proposition 3.11.

Ex.: Let S be a mcs of A and consider a map $f: A \rightarrow B$ a hom. Prove that $f(S) = \mathfrak{s}$ is a mcs of B.
Proof: Let \(x, y \in \overline{S} = f(S) \).

Then \(x = f(s_1) \) and \(y = f(s_2) \) for some \(s_1, s_2 \in S \). Hence \(xy = f(s_1)f(s_2) = f(s_1s_2) = f(s) \). Clearly \(s \in S \).

Thus \(f(S) \) is a mcs.

Proposition 3.16. Let \(A \rightarrow B \) be a ring homomorphism and let \(p \) be a prime ideal of \(A \). Then \(p \) is the contraction of a prime ideal of \(B \) if and only if \(p^{eq} = q \).

Proof: Let \(\phi: A \rightarrow B \) be ring homo.

and \(p \) be a prime ideal. Then \(A/p \) is a mcs. Let \(S = \phi(A-p) \).
let \(\mathfrak{p}^e \) be the extension ideal of \(\mathfrak{p} \)
in \(B \) under \(\phi \), i.e. \(\langle \phi(p) \rangle = \mathfrak{p}^e \).
Then \(\mathfrak{p}^e \mathfrak{p}^e = \phi^e \). For this, let \(\mathfrak{b} \in \mathfrak{p}^e \).

Since \(\mathfrak{b} \mathfrak{c} = \phi(A \mathfrak{p}) \), we have \(\mathfrak{b} = \phi(a) \)
for some \(a \in \mathfrak{p} \). But then

\[
\phi^{-1}(b) = a \in \phi^{-1}(\mathfrak{p}^e) \quad (as \ \mathfrak{b} \in \mathfrak{p}^e)
= \mathfrak{p}^e = \mathfrak{p}, \ \text{a contradiction.}
\]

Let \(f: B \to \hat{\mathfrak{p}}^e B \) a natural homo.
defined by \(f(b) = \frac{b}{1} \).
Consider the map \(A \xrightarrow{f} B \xrightarrow{\overline{f}} \overline{S} \mathbb{B} \).

Now, consider the extension of \(pe \) in \(\overline{S} \mathbb{B} \), that is, the ideal generated by \(f(pe) \) in \(\overline{S} \mathbb{B} \).

Claim: The ideal generated by \(f(pe) \) in \(\overline{S} \mathbb{B} \) is proper.

Suppose on the contrary that

\[
\langle f(pe) \rangle = (1). \quad \text{(note that 1 of } \overline{S} \mathbb{B})
\]

But

\[
\frac{1}{1} = \sum_{i \text{ finite}} \frac{b_i}{\bar{s}_i} f(x_i) \quad \text{where } \frac{b_i}{\bar{s}_i} \in \overline{S} \mathbb{B}
\]

and \(x_i \in pe \).
\[\Rightarrow \quad \frac{1}{1} = \sum_{\text{finite}}^{\infty} \frac{b_i}{s_i} \cdot \frac{x_i}{1} \quad (\text{as } f(x_i) = x_i^\perp) \]

\[= \sum_{\text{finite}}^{\infty} \frac{b_i x_i}{s_i} \]

\[\frac{1}{1} = \frac{x}{s}, \quad \text{where } x \in P^e \text{ and } s \in S. \]

\[\Rightarrow \quad (x - s) s^\prime = 0 \text{ for some } s^\prime \in S. \]

\[\Rightarrow \quad x s^\prime = s s^\prime. \quad \text{Clearly, } s s^\prime \in S \text{ and } x s^\prime \in P^e. \]

\[\Rightarrow \quad x s^\prime \in P^e \cap S = \emptyset, \quad \text{a contradiction.} \]
Thus the ideal generated by \(\langle f(p^e) \rangle \) is a proper ideal of hence it is contained in a proper ideal, \(\mathfrak{J} \).

\[\Rightarrow \mathfrak{J} \text{ is a prime ideal in } \mathfrak{S}^! \mathfrak{B}. \]

Clearly, \(\mathfrak{Q} = \mathfrak{S}^!(\mathfrak{J}) \) be a prime ideal of \(\mathfrak{B} \). (Note that inverse image of prime ideal is prime).

Thus \(\mathfrak{Q} = \mathfrak{J}^c \).

\[\text{Claim: } \mathfrak{Q}^c = \mathfrak{P}. \]

Since \(f(p^e) \subseteq \langle f(p^e) \rangle \subseteq \mathfrak{J} \), we have
Now we prove that \(Q \cap S = \emptyset \).

i.e.

\[f(J) \cap \phi(A) \cap P = \emptyset. \]

Let \((\mathfrak{g}^e)^\prime\) be the extension of \(Q \)
under \(f \) is a proper ideal of \(\mathfrak{S}^e B \).

Since \(p e^e \subseteq Q \), we have

\[f(p e^e) \subseteq f(Q) = f(f^{-1}(e)) \subseteq J. \]

\(\mathfrak{g}^e = \langle f(Q) \rangle \subseteq \langle J \rangle = J \)
Since $J \neq (1)$, we have

$$\left(\mathcal{G}^{\epsilon}\right)' \neq (1).$$

We know the

assert that if $I^e \equiv (1) \iff \mathcal{I} \cap S = \emptyset$.

Hence

$$\mathcal{G} \cap S = \emptyset.$$ Thus the claim.

Now, we prove that $\mathcal{G}^e \cap (A \cup \mathcal{P}) = \emptyset$.

Let $a \in \mathcal{G} \cap (A \cup \mathcal{P})$. Then

$\mathcal{G}(a) \in \mathcal{Q}$ and $a \notin \mathcal{P}$. But then

$\mathcal{G}(a) \notin \mathcal{G}(A \cup \mathcal{P})$.
Thus \(\phi(a) \in \mathcal{Q} \cap \phi(A \setminus \mathcal{P}) \).

\[
= \mathcal{Q} \cap \mathcal{S} = \phi \text{ (empty set)}
\]

ea contradiction.

Hence \(\phi^{-1}(\mathcal{Q}) \cap (A \setminus \mathcal{P}) = \emptyset \).

Now, we are ready to prove our final claim \(\phi^c = P \).

Since \(P^c \subseteq \mathcal{Q} \), we have

\[
P = P^c \subseteq \mathcal{Q}^c \subseteq \mathcal{Q}^c.
\]
Further, we have proved that
\[\bar{g}(Q) \cap (\mathcal{A} \cup P) = \emptyset; \] we set
\[\mathcal{Q} = \bar{g}(Q) \subseteq P. \] This together with
\[Q \mathcal{Q} = Q \subseteq Q \] gives
\[P \subseteq Q \mathcal{Q} \] gives
\[P = Q \mathcal{Q}. \]

Conversely, assume that
\[P = Q \mathcal{Q} \] for some prime ideal \(Q \) of \(B \).

Then
\[P = Q \mathcal{Q} = Q = P. \] Thus \(P = Q \mathcal{Q} \)