CHAPTER I
THE CRYSTALLINE STATE

BY
DR. BHARATI BALASAHEB PATIL
ASSISTANT PROFESSOR, PHYSICS
MAHARAJA, JIVAJIRAO SHINDE COLLEGE, SHRIGONDA

Department of Physics, Maharaja Jivajirao Shinde College, Shrigonda, Ahmednagar
4. ATOMIC PACKING FACTOR (APF)

Definition: It is the ratio of volume of atoms in unit cell to the total volume of unit cell.

APF = \frac{\text{volume of atoms in unit cell}}{\text{total volume of unit cell}}

APF for SC

Number of atoms per unit cell = z = 1

Side of the unit cell = a = 2r

Volume of one atom = \frac{4}{3} \cdot \pi r^3

Volume of unit cell = a^3

APF = 1 \times \left(\frac{4}{3} \cdot \pi r^3\right) / a^3 = \frac{\pi}{6} = 0.52

Hence APF for SC = \frac{\pi}{6} = 0.52
ATOMIC PACKING FACTOR (APF) FOR BCC

- **Definition:** It is the ratio of volume of atoms in unit cell to the total volume of unit cell.
- **APF** = volume of atoms in unit cell/ total volume of unit cell

APF for BCC:

- Number of atoms per unit cell = \(z = 2 \)
- Side of the unit cell = \(a = \frac{4r}{\sqrt{3}} \)
- Volume of one atom = \(\frac{4}{3} \pi r^3 \)
- Volume of unit cell = \(a^3 \)

\[
\text{APF} = \frac{2 \times \left(\frac{4}{3} \pi r^3 \right)}{\left(\frac{4r}{\sqrt{3}} \right)^3} = \frac{\sqrt{3} \pi}{8} = 0.68
\]

Hence APF for SC = \(\sqrt{3} \pi / 8 = 0.68 \)

Department of Physics, Maharaja Jivajirao Shinde College, Shrigonda, Ahmednagar
Definition: It is the ratio of volume of atoms in unit cell to the total volume of unit cell.

APF = volume of atoms in unit cell/ total volume of unit cell

APF for FCC:

Number of atoms per unit cell = z = 4

Side of the unit cell = a = 4r/√2

Volume of one atom = 4/3. Πr³

Volume of unit cell = a³

APF = 4x(4/3. Πr³)/(4r/√2)³ = √2. Π/6 = 0.74

Hence APF for SC = √2. Π/6 = 0.74
5. DENSITY OF CRYSTAL (\(\rho\))

- As unit cell possesses all the structural properties of a bulk crystal, the density of unit cell must be same as the bulk crystal density.
- We knew that \(\rho = \text{mass}/\text{volume}\)
- \(\rho = \frac{z \cdot w}{V}\)
- Where \(z\) is number of atoms per unit cell
- \(w = \text{mass of each atom}\)
- \(V = \text{volume of unit cell}\)
- As, \(w = \frac{\text{Molecular weight of the material}}{N_a}\)
- Where, \(N_a = \text{Avogadro’s constant}\)
5. DENSITY OF CRYSTAL (ρ)....

\[w = \frac{M}{N_a} \]
\[\rho = \frac{z \cdot M}{N_a \cdot V} \]

1. Density of SC: \(z = 1 \), \(V = a^3 \)
\[\rho = \frac{z \cdot M}{N_a \cdot V} \]
\[\rho = \frac{M}{N_a} \cdot a^3 \]

2. Density of BCC: \(z = 2 \), \(V = a^3 \)
\[\rho = \frac{2M}{N_a \cdot A^3} \]

3. Density of FCC: \(z = 2 \), \(V = a^3 \)
\[\rho = \frac{4M}{N_a \cdot a^3} \]