(T.Y.B.Sc.) SEM-III
SOLID STATE PHYSICS (PH-332)
CHAPTER- I
THE CRYSTALLINE STATE
BY
DR. BHARATI BALASAHEB PATIL
ASSISTANT PROFESSOR, PHYSICS
MAHARAJA, JIVAJIRAO SHINDE COLLEGE, SHRIGONDA

Department of Physics, Maharaja Jivajirao Shinde College, Shrigonda, Ahmednagar
There are number of ways in which actual crystal structure may be built.

- **Bravais Lattices**: Bravais shown that 5 different lattices can be generated in which lattice points arranged in 2D space such that each point will have identical surroundings. These are known as Bravais lattices.

- Two dimensional lattice is represented by vectors a and b and and angle between them is denoted by θ.

- Based on the relation in between a, b and value of θ the following crystal systems exists in 2D.
1. Oblique lattice:
 i. In this type $a \neq b$ and angle between a and b (θ) is different from 90° or 120°.
 ii. The conventional unit cell is a parallelogram.

2. Square lattice:
 i. In this type $a = b$ and $\theta = 90^\circ$
 ii. The conventional unit cell is square.
3. Hexagonal lattice:

i. In this type $a=b$ and $\theta = \frac{2\pi}{3}$ or 120°.

ii. A regular hexagon is formed when all the nearby lattice points about a given lattice point O are connected as indicated in Fig.

iii. The primitive cell is a rhombus of 120°.
4. Rectangular lattice:

i. In this type $a \neq b$ but $\theta = \frac{\pi}{2}$ or 90°.

ii. The conventional unit cell is a rectangular.
5. Centered rectangular lattice:

i. In this type of lattice, \(a \neq b\) but \(\theta = \pi/2\) or \(90^\circ\).

ii. The conventional unit cell is a rectangular with an additional atom at the centre of the unit cell.