Title: Pffafian Differential Equation

Name of Teacher: Dr. B. D. Gavhane
Assistant Professor
K. J. Somaiya College, Kopargaon

This study material is useful to the students of

Subject: Mathematics
Course/class: B. Sc., T. Y. B. Sc.
Semester: IV

Paper No.: V, Partial Differential Equation (PDE)

Topic: Pffafian Differential Equation

Keywords: Pffafian differential equation, integrable, complete integral, integral curves, primitives, integrating factor, curl, grad

Pffafian Differential Equation

Let \(p(x, y, z) \), \(Q(x, y, z) \), \(R(x, y, z) \) be functions of three variables \(x, y, z \). Then differential equation (DE) of the form

\[
P(x, y, z)dx + Q(x, y, z)dy + R(x, y, z)dz = 0
\]

Or

\[
Pdx + Qdy + Rdz = 0 \tag{1}
\]

is called Pffafian differential equation in three variables.

Let \(\vec{X} = (P, Q, R) \) and \(d\vec{r} = (dx, dy, dz) \)

Then

\[
\vec{X} \cdot d\vec{r} = Pdx + Qdy + Rdz
\]
Then equation (1) can be written as

\[\overline{X} \cdot d \overline{r} = Pdx + Qdy + Rdz = 0 \]

i.e.

\[\overline{X} \cdot d \overline{r} = 0 \]

Where \(\overline{X} = (P, Q, R) \) and \(d \overline{r} = (dx, dy, dz) \)

This is vector form of Pfaffian DE.

Ex. Define Pfaffian DE in three variables and vector form of Pfaffian DE.

Theorem (1): If \(\overline{X} \) is vector and \(\mu \) is function of \(x, y, z \) then \(\overline{X} \cdot \text{curl}\overline{X} = 0 \) iff \(\mu\overline{X} \cdot \text{curl}(\mu\overline{X}) = 0 \)

Proof: Part –I : Necessary condition

Assume that

\[\overline{X} \cdot \text{curl}\overline{X} = 0 \]

Now

\[\text{curl}(\mu\overline{X}) = \nabla \times (\mu\overline{X}) \]

\[= \nabla \mu \times \overline{X} - \mu \nabla \times \overline{X} \]

As

\[\text{curl}(\emptyset \overline{v}) = \nabla \emptyset \times \overline{v} - \emptyset \nabla \times \overline{v} \]

Now

\[\mu\overline{X} \cdot \text{curl}(\mu\overline{X}) = \mu\overline{X} \cdot [\nabla \mu \times \overline{X} - \mu \nabla \times \overline{X}] \]

\[= \mu\overline{X} \cdot \nabla \mu \times \overline{X} - \mu\overline{X} \cdot \mu \nabla \times \overline{X} \]

\[= \mu(\overline{X} \cdot \nabla \mu \times \overline{X}) - \mu^2(\overline{X} \cdot \nabla \times \overline{X}) \]

\[= \mu(0) - \mu^2(0) \]

by assumption and if two vectors are similar in scalar triple product then it equal to zero.

\[\therefore \mu\overline{X} \cdot \text{curl}(\mu\overline{X}) = 0 \]
Part-II : Sufficient condition

Assume that

\[\mu \bar{X} \cdot \text{curl}(\mu \bar{X}) = 0 \]

\[\mu \bar{X} \cdot (\nabla \mu \times \bar{X} - \mu \nabla \times \bar{X}) = 0 \]

\[\mu \bar{X} \cdot \nabla \mu \times \bar{X} - \mu \bar{X} \cdot \mu \nabla \times \bar{X} = 0 \]

\[\mu (\bar{X} \cdot \nabla \mu \times \bar{X}) - \mu^2 (\bar{X} \cdot \nabla \times \bar{X}) = 0 \]

\[\mu(0) - \mu^2 (\bar{X} \cdot \nabla \times \bar{X}) = 0 \]

as if two vectors are similar in scalar triple product then it equal to zero

\[\therefore \mu^2 (\bar{X} \cdot \nabla \times \bar{X}) = 0 \]

\[\therefore \bar{X} \cdot \nabla \times \bar{X} = 0 \text{ as } \mu^2 \neq 0 \]

Hence theorem.

Theorem (2): Let \(\bar{X} = (P, Q, R) \), where \(P, Q, R \) are functions of \(x, y, z \) and

\[d\bar{r} = (dx, dy, dz) \]. Then the Pfaffian DE

\[\bar{X} \cdot d\bar{r} = Pdx + Qdy + Rdz = 0 \]

i.e. \(\bar{X} \cdot d\bar{r} = 0 \) is integrable iff \(\bar{X} \cdot \text{curl}\bar{X} = 0 \)

Proof : Part –I : Necessary condition

Let \(\bar{X} = (P, Q, R) \), where \(P, Q, R \) are functions of \(x, y, z \) and \(d\bar{r} = (dx, dy, dz) \).

Assume that the Pfaffian DE

\[\bar{X} \cdot d\bar{r} = Pdx + Qdy + Rdz = 0 \] \(\text{(1)} \)

i.e. \(\bar{X} \cdot d\bar{r} = 0 \) is integrable.

Hence it has solution, let it be

\[\emptyset(x, y, z) = c_1 \]

If equation (1) is exact DE, then we have
\[\frac{\partial \phi}{\partial x} = P, \frac{\partial \phi}{\partial y} = Q, \frac{\partial \phi}{\partial z} = R \]

\[\therefore \vec{X} = (P, Q, R) \]

\[\vec{X} = \left(\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z} \right) = \nabla \phi \]

Now

\[\text{curl} \vec{X} = \nabla \times \vec{X} = \nabla \times \nabla \phi = 0 \]

as \(\text{curl} (\text{grad} \phi) = 0 \) for any scalar function \(\phi \)

\[\vec{X} \cdot \text{curl} \vec{X} = \vec{X} \cdot 0 = 0 \]

\[\therefore \vec{X} \cdot \text{curl} \vec{X} = 0 \]

If equation (1) is not exact DE, then it has integrating factor, let it be \(\mu = \mu(x, y, z) \).

Therefore

\[\mu P \, dx + \mu Q \, dy + \mu R \, dz = 0 \]

becomes exact.

Let its solution be

\[\psi(x, y, z) = c_2 \]

Then we have

\[\frac{\partial \psi}{\partial x} = \mu P, \frac{\partial \psi}{\partial y} = \mu Q, \frac{\partial \psi}{\partial z} = \mu R \]

\[\therefore \mu \vec{X} = (\mu P, \mu Q, \mu R) \]

\[\vec{X} = \left(\frac{\partial \psi}{\partial x}, \frac{\partial \psi}{\partial y}, \frac{\partial \psi}{\partial z} \right) = \nabla \psi \]
Now

\[
\text{curl}(\mu \vec{X}) = \nabla \times \mu \vec{X} = \nabla \times \nabla \psi = 0
\]

as \(\text{curl}(\text{grad}\phi) = 0\) for any scalar function \(\phi\)

\[
\mu \vec{X} \cdot \text{curl}(\mu \vec{X}) = \mu \vec{X} \cdot \vec{0} = 0
\]

\[
\mu \vec{X} \cdot \text{curl}(\mu \vec{X}) = 0
\]

Therefore by above theorem (1), we have

\[
\vec{X} \cdot \text{curl} \vec{X} = 0
\]

Part II: Sufficient condition

Assume that

\[
\vec{X} \cdot \text{curl} \vec{X} = 0
\]

To prove: \(\vec{X} \cdot d\vec{r} = 0\) is integrable.

That is

\[
Pdx + Qdy + Rdz = 0
\]

is integrable.

Treating

\[
z = \text{constant}
\]

\[
\therefore \ dz = 0
\]

Therefore equation (1) becomes

\[
Pdx + Qdy = 0
\]

(2)

This is Pfaffian DE in two variable and so is integrable and so it has integrating factor, let it be \(\mu = \mu(x, y, z)\).

Therefore

\[
\mu Pdx + \mu Qdy = 0
\]
becomes exact.

Let its solution be

$$\psi(x, y, z) = c_1$$

Then we have

$$\frac{\partial \psi}{\partial x} = \mu P, \quad \frac{\partial \psi}{\partial y} = \mu Q$$

$$\frac{1}{\mu} \frac{\partial \psi}{\partial x} = P, \quad \frac{1}{\mu} \frac{\partial \psi}{\partial y} = Q$$

Equation (1) becomes

$$\frac{1}{\mu} \frac{\partial \psi}{\partial x} dx + \frac{1}{\mu} \frac{\partial \psi}{\partial y} dy + Rdz = 0$$

$$\frac{\partial \psi}{\partial x} dx + \frac{\partial \psi}{\partial y} dy + \mu Rdz = 0$$

$$\frac{\partial \psi}{\partial x} dx + \frac{\partial \psi}{\partial y} dy + \frac{\partial \psi}{\partial z} dz + \mu Rdz - \frac{\partial \psi}{\partial z} dz = 0$$

$$\nabla \psi \cdot d\bar{r} + \left(\mu R - \frac{\partial \psi}{\partial z} \right) dz = 0$$ \hspace{1cm} (3)

$$\mu R - \frac{\partial \psi}{\partial z} = \eta$$

$$\therefore \mu R = \eta + \frac{\partial \psi}{\partial z}$$

So equation (3) becomes

$$\nabla \psi \cdot d\bar{r} + \eta dz = 0$$ \hspace{1cm} (4)

And

$$\therefore \mu \vec{X} = (\mu P, \mu Q, \mu R)$$

$$= \left(\frac{\partial \psi}{\partial x}, \frac{\partial \psi}{\partial y}, \eta + \frac{\partial \psi}{\partial z} \right)$$
\[
\frac{\partial \psi}{\partial x}, \frac{\partial \psi}{\partial y}, \frac{\partial \psi}{\partial z}) + (0, 0, \eta) = \nabla \psi + \eta \vec{k}
\]

Now

\[
\text{curl}(\mu \vec{X}) = \nabla \times (\nabla \psi + \eta \vec{k})
\]

\[
= \nabla \times \nabla \psi + \nabla \times \eta \vec{k}
\]

\[
= \vec{0} + \nabla \times \eta \vec{k}
\]

\[
= \nabla \times \eta \vec{k}
\]

\[
= \left[\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
0 & 0 & \eta
\end{array} \right]
\]

\[
= \vec{i} \left(\frac{\partial \eta}{\partial y} - 0 \right) - \vec{j} \left(\frac{\partial \eta}{\partial x} - 0 \right) + \vec{k} (0 - 0)
\]

\[
= \vec{i} \left(\frac{\partial \eta}{\partial y} \right) - \vec{j} \left(\frac{\partial \eta}{\partial x} \right) + \vec{k} (0)
\]

\[
\mu \vec{X} \cdot \text{curl}(\mu \vec{X}) = \frac{\partial \psi \partial \eta}{\partial x \partial y} - \frac{\partial \psi \partial \eta}{\partial y \partial x} + 0
\]

\[
= \frac{\partial (\psi, \eta)}{\partial (x, y)}
\]

By assumption

\[
\vec{X} \cdot \text{curl}(\vec{X}) = 0
\]

\[
\Rightarrow \mu \vec{X} \cdot \text{curl}(\mu \vec{X}) = 0
\]

by above theorem

\[
\Rightarrow \frac{\partial (\psi, \eta)}{\partial (x, y)} = 0
\]

Therefore there exists a relation between \(\psi \) and \(\eta \), not involving \(x \) or \(y \) explicitly.

Let it be \(\Phi(\psi, \eta) = 0 \).
And hence from equation (4), \(\eta \) is the function of \(\psi \) and \(z \) alone.

i.e. \(\eta = \eta(\psi, z) \)

Hence from equation (4), we have

\[
d\psi + \eta(\psi, z)dz = 0
\]

Therefore it has solution, let it be

\[
F(\psi, z) = c_2
\]

Using this in equation \(U(x, y, z) = c_3 \) and this is the solution of equation (1).

Hence equation (1) is integrable.

Hence theorem.

Ex.1- Solve or show that the DE is integrable and solve it or find complete integral or find integral curves or primitives of

\[
ydx + xdy + zdz = 0
\]

Sol.- The given DE

\[
ydx + xdy + zdz = 0 \quad (1)
\]

is Pfaffian DE of the form

\[
Pdx + Qdy + Rdz = 0
\]

with \(P = y, Q = x, R = z \)

Let \(\vec{X} = (P, Q, R) = (y, x, z) \)

and \(d\vec{r} = (dx, dy, dz) \)

Then the given DE (1) can be written as

\[
\vec{X} \cdot d\vec{r} = 0
\]

We know that the Pfaffian DE

\[
Pdx + Rdy + Rdz = 0
\]

is integrable iff \(\vec{X} \cdot \text{curl} \vec{X} = 0 \).

Now
\[\text{curl} \vec{X} = \begin{bmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial y} & \frac{\partial}{\partial x} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial z} & \frac{\partial}{\partial y} & \frac{\partial}{\partial x} \end{bmatrix} \]

\[= i \left(\frac{\partial z}{\partial y} - \frac{\partial x}{\partial z} \right) - j \left(\frac{\partial z}{\partial x} - \frac{\partial y}{\partial z} \right) + k \left(\frac{\partial x}{\partial y} - \frac{\partial y}{\partial x} \right) \]

\[= i(0 - 0) - j(0 - 0) + k(1 - 1) \]

\[= i(0) + j(0) + k(0) \]

Now

\[\vec{X} \cdot \text{curl} \vec{X} = y(0) + x(0) + z(0) \]

\[= 0 \]

Therefore the given DE (1) is integrable.

Hence

\[ydx + xdy + zdz = 0 \]

\[d(yx) + zdz = 0 \]

Integrating, we get

\[yx + \frac{z^2}{2} = c \]

This general solution or complete integral or integral curves or primitives of given DE (1).