Study Material

M.Sc. Part-I (Chemistry)
Course - Org. chem. B (CCTR-61/CHO-250)
Prepared by: Dr. Gopinath D. Shirodkar
Dept. of chemistry.
A.S.S college, Rahata

Simple problems based on 13C-NMR

1. Deduce the structure of the following.

 - MP = (C6H10O)
 - N.S.U = (Cn+1) - HO12
 - 10 + 1 = 11
 - 11 / 2 = 5.5
 - 7 - 5 = 02

 - CMR:
 - δ 204 (s) = presence of 1 of ketone (SP2)
 (s = its quaternary carbon)
 - 26 (t, strong) = -CH2- (SP3) x 2
 (strong = it is appeared due to more than one carbon)
 - 28 (t, strong) = -CH2- (SP3) x 2
 (strong = it is appeared due to more than one carbon)
 - 24 (t) = -CH2- (SP3 hybridized)

 The correct structure is -

 ![Structure Diagram]

 - 36
 - 204
 - 28
 - 24
 - Cyclohexanone,
2. \(MF = C_4H_8O \)

N.S.O. = \((4+1) - 8/2 = 5 - 4 = 0\) for Iodoform test

Chemical Information: A positive iodoform test implies:

- Presence of methyl ketone.

CMR Data:

a) 207 \(\delta(\delta) \) \(-\text{C} = \text{ketone}(\text{SP}^2)\) carbon.

b) 35 \(\delta(\delta) \) \(-\text{CH}_3\) \((\text{SP}^3)\) carbon

c) 32 \((t)\) \(-\text{CH}_2\) \((\text{SP}^3\) carbon)

d) 28 \(\delta(\delta) \) \(-\text{CH}_2\) \((\text{SP}^3)\) carbon

The correct structure is: \(-\text{CH}_3 - \text{CH}_2 - \text{C} - \text{CH}_3\)
3. \(MF = \text{C}_3\text{H}_7\text{I} \)

For calculating NSU replace I by H then MF becomes \(\text{C}_6\text{H}_8 \)

\[\text{N.S.U} = (3+1) - 8/2 = 4 - 4 = 0 \]

CMR data:

(a) \(9:2 \text{ (t)} \Rightarrow \) presence of \(-\text{CH}_2-\) (sp\(^3\) hybridised)

(b) \(15:2 \text{ (q)} \Rightarrow \) presence of \(-\text{CH}_3\) (sp\(^3\) carbon)

(c) \(27 \text{ (t)} \Rightarrow \) presence of \(-\text{CH}_2-\) (sp\(^3\) carbon)

The correct structure is:

\[\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{I} \]

4. \(MF = \text{C}_6\text{H}_{12}\text{N}_2 \)

Replace N by 'CH' then MF becomes \(\text{C}_6\text{H}_{14} \)

\[\text{N.S.U} = (6+1) - 14/2 = 7 - 7 = 0 \]

CMR data:

(a) \(35 \text{ (t)} \Rightarrow \) \(-\text{CH}_2-\) (sp\(^3\) carbon) \(\times 2 \)

(b) \(52 \text{ (t)} \Rightarrow \) \(-\text{CH}_2-\) (sp\(^3\) carbon) \(\times 2 \)

The number of signals given in CMR data are two while no. of carbons in MF are four.

\[\Rightarrow \) each signal is appeared due to two carbons.

The correct structure is:

\[\text{H}_2\text{N}-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{NH}_2 \]

1,4-butane dianmine
5) **MF:** C₆H₄NO

\[\text{N.S.U} = (3+1) - 4/2 = 4 - 2 = 2 \]

(CMR Data):

a) 50 (t) = Presence of -CH₂- (sp³ carbon)

b) 74 (d) = Presence of \(\text{CH}_2 \) (sp² carbon)

c) 84 (s) = Presence of \(\text{C}=\text{O} \) (Quaternary carbon)

The probable structure is:

\[\text{H-C=O-C-CH}_2\text{-OH} \]

6) **MF:** C₄H₅NO₂

\[\text{NSU} = (5+1) - 16/2 = 6 - 3 = 3 \]

(CMR Data):

a) 60.3 (t) = Presence of -CH₂- (sp³ carbon)

b) 183.6 (s) = Presence of -\(\text{C}=\text{O} \) (sp² carbon)

In CMR only two signals are given, so each signal appeared due to more than one carbon.

The correct structure is:

Three s.u.

- 183.6 \(\Rightarrow \) two satisfied
- 80.3 (t) \(\Rightarrow \) in \(\text{CH}_2 \) group at 1,3
- 183.6

Succinamide.
7. \[MF = \text{C}_5\text{H}_{11}\text{N} \]
 replace N by CH then \[MF = \text{C}_6\text{H}_{12} \]
 \[NSU = (6+1) - (12/2) \]
 \[= 7 - 6 \]
 \[= 0 \]

 \[\text{CMR data:} \]
 (a) \[25.5 \text{ (t)} \] \[\Rightarrow \] presence of \(-\text{CH}_2\) \(\text{ (sp}^3\text{ carbon)}\)
 (b) \[27.6 \text{ (t, strong)} \] \[\Rightarrow \] presence of \(-\text{CH}_2\) \(\text{ (sp}^3\text{ carbon)}\)
 strong \(\Rightarrow\) it is appeared due to more than one 'C'
 (c) \[47.8 \text{ (t, strong)} \] \[\Rightarrow \] presence of \(-\text{CH}_2\) \(\text{ (sp}^3\text{ carbon)}\)
 strong \(\Rightarrow\) it also appeared due to more than one 'C'

 All carbon atoms are \text{sp}^3 hybridised, so we have show size site of unsaturation in the form of ring (aliphatic)

 The probable structure is:

8. \[MF = \text{C}_6\text{H}_{12}\text{O}_3 \]
 \[NSU = (6+1) - 2/2 = 5 - 1 = 04 \]

 \[\text{CMR data:} \]
 (a) \[136.6 \text{ (d)} \] \[\Rightarrow \] presence of \(-\text{CH} \) \(\text{ (sp}^2\text{ carbon)}\)
 (b) \[164.3 \text{ (s)} \] \[\Rightarrow \] presence of \(-\text{C} = \text{O} \) \(\text{sp}^2\text{ quaternary} \)

 In this example each signal appeared due to more than one carbon (two C)

 The correct structure is

 \[\text{maleic anhydride} \]
8) MF = C8H12
NSU = (9+1) - \(\frac{12}{2} \) = 04
CMR data:
(a) 21.2 (q) = -CH₃ (sp³ carbon) \times 3
(b) 127.2 (d) = =CH (sp² carbon) \times 3
(c) 137.5 (s) = =C- (sp² quaternary C) \times 3

Only three signals are given so each signal appeared due to (more than one carbon) three carbons

The correct structure is:

![Structure](attachment:image.png)

10) MF = C4H8O
NSU = (4+1) - \(\frac{8}{2} \) = 5 - 4 = 01
CMR:
(a) 52 (t) = presence of -CH₂-X₂ (sp³ carbon)
(b) 33 (t) = presence of -CH₂-X₂ (sp³ carbon)

each signal appeared due to two carbons

The probable structure is:

![Structure](attachment:image.png)

Tetrahydrofuran
11 MF = C₄H₈O₂

NSU = (4+1) – 8/2 = 5 - 4 = 0

\textbf{CmR data: –}

\textbf{a)} \$8.85\ (t) \Rightarrow \text{presence of } -\text{CH₂-}

\text{only one signal appeared in CmR, from this we can say that all the carbon atoms are equivalent} \Rightarrow \text{presence of } (4-\text{CH₂-) groups}

The probable structure is:

\[\text{1,4-dioxane} \]

12 MF = C₃H₇NO

\[\text{replace N by CH then MF = C₄H₈O} \]

NSU = (4+1) – 8/2 = 5 - 4 = 0

\textbf{CmR data: –}

\textbf{a)} \$34.9\ (q) \Rightarrow -\text{CH₃} \ (\text{SP}^3 \ \text{carbon})

\textbf{b)} \$41.5\ (q) \Rightarrow -\text{CH₃} \ (\text{SP}^3 \ \text{carbon})

\textbf{c)} \$165.2\ (s) \Rightarrow -\text{C} = \text{O} \ (\text{SP}^2 \ \text{carbon}) \Rightarrow \text{amide}

The correct structure is:

\[\text{CH₃} - \text{C} = \text{NH} - \text{CH₃} \]
13. **MF = C₃H₇NO**
 - Replace N by \(-\text{CH-}\) then MF = C₄H₈O₂N

 NSD = \((4+1)-8/2 = 5-4 = 1\)

 CMR:
 a) 168 (s) \(\Rightarrow\) presence of \(-\text{C-}\) (Sp² Quaternary C)
 b) 35 (t) \(\Rightarrow\) presence of \(-\text{CH}_2-\) (Sp³)
 c) 22 (q) \(\Rightarrow\) presence of \(-\text{CH}_3\) (Sp³ Carbon)

 The correct structure is:

 \[
 \text{CH₃-CH₂-C-NH₂} \quad \text{168}
 \]

 \[
 \text{22(q)} \quad \text{35(t)}
 \]

14. **Two isomorphic alcohols A & B with following data**

 Isomer A
 ④ 11 (q) \(\Rightarrow\) \(-\text{CH}_3\)
 ⑤ 23 (q) \(\Rightarrow\) \(-\text{CH}_3\)
 ⑥ 68 (d) \(\Rightarrow\) \(-\text{CH}-\)
 ⑦ 33 (t) \(\Rightarrow\) \(-\text{CH}_2-\)

 Correct structure is:

 \[
 \text{11(q) → CH₃-CH₂-CH-OH} \quad \text{68(d)}
 \]

 \[
 \text{33(t)} \quad \text{23(q)}
 \]

 Isomer B
 ⑤ 18 (q) \(\Rightarrow\) \(-\text{CH}_2\)
 ⑥ 32 (d) \(\Rightarrow\) \(-\text{CH}-\)
 ⑦ 67 (t) \(\Rightarrow\) \(-\text{CH}_2-\)

 \[
 \text{18(q)} \quad \text{67(t)} \quad \text{32(d)}
 \]
MF = C₈H₁₂O
NSU = \((8 + 1) - \frac{12}{2} = 9 - 6 = 03 \)

CMR data:

- 23.5 (t) \(\Rightarrow \) presence of \(-\text{CH}_2-\) (sp³ carbon)
- 25.6 (t) \(\Rightarrow \) presence of \(-\text{CH}_{2}-\) (sp³ carbon)
- 40.1 (t) \(\Rightarrow \) presence of \(-\text{CH}_2-\) (sp³ carbon)
- 68.7 (s) \(\Rightarrow \) presence of \(-\text{C}=\text{C}-\) (sp³ quaternary carbon)
- 72.8 (d) \(\Rightarrow \) presence of \(-\text{C}=-\text{H}\) (sp carbon)
- 88.4 (s) \(\Rightarrow \) presence of \(-\text{C}=-\text{C}\) (sp quaternary carbon)

Out of these six signals, two are appears due to more than one carbon.

The correct structure is:

\[
\begin{align*}
\text{HO} & \quad \text{C} = \text{C} - \text{H} \\
\text{H} & \quad \text{C} = \text{C} - \text{H} \\
\text{HO} & \quad \text{C} = \text{C} - \text{C}
\end{align*}
\]

Mass:
- 124 (m/z), 123, 109, 85, 81, 68, 53, 39

\[
\begin{align*}
\text{HO} & \quad \text{C} = \text{C} - \text{H} \\
\text{HO} & \quad \text{C} = \text{C} - \text{H}
\end{align*}
\]

\[\text{m/e} = 124\]
\[\text{m/e} = 123\]
MF = C8H7OCl

Replace KI by H, then MF becomes C8H8O

N.S.O = (8+1) - 8/2 = 9 - 4 = 5

IR =

(a) 1750 cm\(^{-1}\) -> presence of \(\text{C}=\text{O}\) at ketone/Acid Chloride
(b) 1600 cm\(^{-1}\) -> presence of \(\text{C} = \text{C}\) of aromatic ring
(c) 1500 cm\(^{-1}\) ->

cmr data
(a) 28 (s) -> presence of \(-\text{CH}_3\) (sp\(^3\) carbons)
(b) 128 (d) -> presence of \(-\text{C} = \text{C}\) (sp\(^2\) carbons)
(c) 129 (d) -> presence of \(-\text{C} = \text{C}\) (sp\(^2\) hybridised)
(d) 135 (s) -> presence of \(-\text{C} = \text{O}\) (sp\(^2\) hybridised)
(e) 140 (s) ->

The probable structure is:

\[\begin{align*}
 &\begin{array}{cc}
 \text{O} & \text{Cl} \\
 & \text{Cl}
 \end{array} \\
 &\begin{array}{cc}
 \text{O} & \text{Cl} \\
 & \text{Cl}
 \end{array} \\
\end{align*} \]

Mass: 154/156 \((\text{m}^+ : 3:1), 139/141, 111/113\)

If 35\(^{Cl}\) -> m/e = 154
37\(^{Cl}\) -> m/e = 156

\[\begin{align*}
 &\begin{array}{cc}
 \text{O} & \text{Cl} \\
 & \text{Cl}
 \end{array} \\
 &\begin{array}{cc}
 \text{O} & \text{Cl} \\
 & \text{Cl}
 \end{array} \\
\end{align*} \]

\[\text{O=C-Cl} \]

Not possible

\[\text{[Diagram]} \]

\[\text{[Diagram]} \]

\[\text{[Diagram]} \]

\[\text{[Diagram]} \]
Two isomeric hydrocarbons A and B of C5H10 show the following cnmr data. Deduce the structure from given data.

Isomer A:

1. $13(q) = -\text{CH}_3 (\text{sp}^3)$
2. $17(q) = -\text{CH}_3$
3. $26(q) = -\text{CH}_3$
4. $118(d) = -\text{CH}_2 (\text{sp}^2)$
5. $132(s) = -\text{C} = \text{C} - \text{CSp}^2 (\text{Quaternary carbon})$

The probable structure is:

![Structure of Isomer A]

Isomer B:

1. $13(q) = -\text{CH}_3$
2. $22(q) = -\text{CH}_3$
3. $31(t) = -\text{CH}_2 -$
4. $108(t) = -\text{CH}_2 - (\text{sp}^2 \text{ carbon})$
5. $147(s) = -\text{C} - \text{H} - (\text{sp}^2 \text{ Quaternary C})$

![Structure of Isomer B]
MF = C₄H₇NO
replace 'N' by 'CH' then MF becomes C₅H₁₀O
NSU = (5+1) - 10/2
= 6 - 5 = 01

CMR data:
(a) 47.4 (t) = -CH₂- (sp³ carbon)
(b) 68.2 (t) = -CH₂- (sp³ carbon)

Only two signals are given in CMR data, so each signal appears due to two carbons.

The correct structure is:

![Chemical structure diagram]

MF = C₁₂H₁₈
NSU = (12+1) - 18/2 = 13 - 9 = 04

CMR data:
6 × 4 20.9 (q, strong) = -CH₃ (sp³ carbon)
6 × 5 132.7 (s, strong) = =C- (sp²-hybridized quaternary carbon)

Only two signals are given, so each signal appeared due to six carbons.

The correct structure is:

![Chemical structure diagram]